Log and Antilog Tricks
How to solve pH, Kinetics, and Electrochemistry problems without a calculator.
1. Values to Memorize (Base 10)
You only need to memorize Log 2, 3, 5, and 7. The rest can be derived.
| x | log x (Approx) |
|---|---|
| 2 | 0.30 |
| 3 | 0.48 |
| 4 | 0.60 ($2 \log 2$) |
| 5 | 0.70 |
| x | log x (Approx) |
|---|---|
| 6 | 0.78 ($\log 2 + \log 3$) |
| 7 | 0.85 |
| 8 | 0.90 ($3 \log 2$) |
| 9 | 0.95 ($2 \log 3$) |
2. Calculating Logarithms
Standard Format Method
Convert any number to scientific notation: $m \times 10^n$.
$400 = 4 \times 10^2$
$\log(4 \times 10^2) = 2 + \log 4$
$= 2 + 0.60 = 2.60$
$0.003 = 3 \times 10^{-3}$
$\log(3 \times 10^{-3}) = -3 + \log 3$
$= -3 + 0.48 = -2.52$
4.5 is halfway between 4 and 5.
$\log 4 = 0.60$, $\log 5 = 0.70$.
$\log 4.5 \approx 0.65$
3. Calculating Antilog
Splitting Method
Antilog is simply $10^x$. Break the number into an Integer and a Decimal part.
Case A: Positive Numbers
Example: Antilog(3.6)
- Split: $3 + 0.6$
- Convert Integer to power: $10^3$
- Convert Decimal to number: Which $\log x \approx 0.6$? $\rightarrow 4$.
- Combine: $4 \times 10^3$
Case B: Negative Numbers (Common in pH)
Example: Antilog(-4.3)
Problem: Mantissa (decimal part) must be positive.
- Add and subtract 1 to the integer part to make decimal positive.
- $-4.3 = -4 - 0.3 = (-4 - 1) + (1 - 0.3)$
- $= -5 + 0.7$
- Convert Integer (-5) to power: $10^{-5}$
- Convert Decimal (0.7) to number: Which $\log x \approx 0.7$? $\rightarrow 5$.
- Combine: $5 \times 10^{-5}$
Shortcut: Next integer is 5. $10^{-5}$.
Difference is $5 - 4.3 = 0.7$. Antilog(0.7) is 5.
Result: $5 \times 10^{-5}$.
No comments:
Post a Comment