Halogenation: Conditions Matter
$X_2$ in UV Light/Heat vs $X_2$ with Lewis Acid ($FeCl_3/AlCl_3$).
The reaction of halogens ($Cl_2$ or $Br_2$) with hydrocarbons depends entirely on the reaction conditions. Light ($h\nu$) or Heat ($\Delta$) promotes Free Radical Substitution on alkyl chains, while Lewis Acids ($FeCl_3, AlCl_3$) promote Electrophilic Substitution on aromatic rings.
1. $X_2$ + UV Light ($h\nu$) or Heat ($\Delta$)
Free Radical Substitution
High energy photons or heat cause Homolytic Fission of the halogen bond ($Cl-Cl \to 2Cl^\bullet$). The halogen radical attacks $sp^3$ hybridized carbons (alkanes or side chains).
2. $X_2$ + Lewis Acid ($FeCl_3, AlCl_3, Fe$)
Electrophilic Aromatic Substitution (EAS)
Lewis acids accept electron pairs, causing Heterolytic Fission of the halogen bond to generate an electrophile ($X^+$).
3. Summary: Toluene as the Case Study
| Reagents | Condition | Mechanism | Active Species | Site of Attack | Product |
|---|---|---|---|---|---|
| $Cl_2 + h\nu / \Delta$ | Sunlight / Heat | Free Radical Substitution | $Cl^\bullet$ (Radical) | Side Chain ($sp^3$ C) | Benzyl Chloride |
| $Cl_2 + FeCl_3$ | Dark / Catalyst | Electrophilic Substitution | $Cl^+$ (Electrophile) | Benzene Ring ($sp^2$ C) | o/p-Chlorotoluene |
4. Note on Addition Reactions
If $X_2$ is used in an inert solvent like $CCl_4$ in the dark without a Lewis acid, it undergoes Electrophilic Addition across double bonds (alkenes/alkynes).
Knowledge Check
Test your understanding of Halogenation Conditions
No comments:
Post a Comment